
Learning to Design Convolutional Neural Networks
with Reinforcement Learning

Aashima Arora
Department of Computer Science

Columbia University
aa3917@columbia.edu

Jason Krone
Department of Computer Science

Columbia University
jpk2151@columbia.edu

Abstract

Developing novel and effective convolutional neural network (CNN) architectures
currently requires significant expertise and considerable trial and error. In this
paper, we explore the use of reinforcement learning to automate the design of
CNN architectures using validation accuracy as our reward function. Futhermore,
we show that it is relatively simple to modify the reward function to account for
computational requirements, such as the maximum number of parameters that can
be used in the network. We intentionally constrain our architecture search space to
decrease training time, determine the values of the reward function, and allow for a
complete analysis of sample complexity and performance.

1 Introduction

State-of-the-art convolutional architectures have become increasingly complex over the recent years
as researchers search for better performing models. This trend can be seen in the winning architectures
of the ImageNet competition. The first deep neural network to win the competition, AlexNet, was a
relatively simple 8-layer architecture. Soon thereafter, the networks became deeper with VGG and
more complicated as skip connections were added and multiple convolutional operations were applied
at each layer in the ResNet and Inception architectures respectively. In addition, the performance
gains and designs of these networks continue to become more incremental and less intuitive over
time. For these reasons, it is likely that future advances in neural network architectures will be driven
by more complex building blocks and require a high volume of experiments to discover. Therefore, it
makes sense to automate architecture design by extending the paradigm of end-to-end learning to
include the optimization of network architectures.

There are a number of candidate methods for automating architecture discovery. Bayesian optimiza-
tion, evolution strategies, and reinforcement learning are all capable of optimizing black box functions,
such as validation accuracy. In this work, we choose the Reinforcement Learning framework because
it has demonstrated success in designing state-of-the-art architectures for the ImageNet dataset. Please
see our related works section for a more detailed discussion of this result and alternative methods.

To provide context we give a brief review of the reinforcement learning problem and describe how
architecture search fits into this formulation. Reinforcement learning is the process of training an
agent to maximize reward in an environment. More technically, the aim is to learn the optimal
policy for selecting actions to take in a Markov Decision Process (MDP). A MDP is defined as
〈S,A, P, r, ρ0, γ, T 〉 where S is a set of states, A is a set of actions, P : S × A × S → R+ is
a transition function, r : S × A → [Rmin, Rmax] is a reward function, γ ∈ [0, 1] is a discount
factor, and T is a time horizon. The policy π : S × A → R+ is trained to maximize the expected
discounted return η(πθ) = Eτ

[∑T
t=0 γ

tr(st, at)
]
, where τ denotes a trajectory τ = (s0, a0, . . .)

sampled according to πθ with s0 ∼ ρ0(s0), at ∼ πθ(at | st), and st+1 ∼ P (st+1 | st, at). In the
MDP corresponding to our implementation of architecture search, each action a defines a neural

network architecture and A is our architecture search space. The set of states is S = {sinit, strained},
where sinit is an initial state in which no architecture has been trained and strained is a state in which
an architecture has been trained. The reward for any architecture and initial state R : (a, sinit)→ R+

is a function of the validation accuracy of the trained neural network with architecture a. Given an
initial state sinit and an architecture a, the environment will always transition to the trained state i.e.
P (strained | sinit, a) = 1.0. Our objective in this framework is to learn an optimal policy π∗

θ that
selects the architecture(s) with the highest validation accuracy.

It is the case that many convolutional architectures such as VGG, ResNet, and Inception have a
modular design. These networks repeat a pattern of operations, which we refer to as a convolutional
"cell". For instance, the VGG cell contains three 3x3 convolutions followed by a maxpool. Taking
inspiration from [2], we define our search space over cells rather than entire architectures. This
approach has two advantages over predicting which operation to apply at every layer: 1. it reduces
the search space and saves time 2. it reduces the likelihood of "overfitting" to the validation set. In
the approach section, we describe exactly how a cell is defined and how a network is constructed
given a cell architecture.

In addition to searching for the convolution cell that achieves maximum validation accuracy on
MNIST, we show it is simple to modify the reward function such that architecture search finds
the best architecture with fewer than n parameters. This extension could be particularly useful
when searching for architectures to be run on embedded devices, which often have specific memory
constraints. Moreover, our approach is flexible and can accommodate using other metrics, such as
maximum inference time, in place of parameter count. To the best of our knowledge this is a new
extension of architecture search that has not been explored in other publications.

2 Related Work

The process of manually designing machine learning models is difficult because the search space
of all possible models can be combinatorially large. Hence, the process of designing networks
often takes a significant amount of time and experimentation by those with significant machine
learning expertise. Recently, the idea of using certain types of neural networks (LSTM RNN’s)
to automatically generate neural network architectures consisting of convolutional cells has been
attracting a lot of attention. Evolutionary algorithms and reinforcement learning have shown great
promise among many algorithms that have been studied in this aspect. Recent works such as Zoph &
Le(2016)[1] focus on learning architectures for large academic datasets like ImageNet and COCO
datasets that vastly outperform state-of-the-art-models.

The design of our search-action space is inspired from LSTMs, and Neural Architecture Search Cell[1].
The modular structure of the convolutional cell is also related to previous methods on ImageNet
such as VGG, Inception, and ResNet. We constrain the search to finding a good convolutional
cell design, and simply stack it to handle inputs of arbitrary spatial dimensions and filter depth.
The controller in NASnet is auto-regressive, which means it predicts hyperparameters one a time,
conditioned on previous predictions. Eventually the controller learns to assign high probability to
areas of architecture space that achieve better accuracy on the validation dataset, and low probability
to areas of architecture space that score poorly. Thus, the controller learns directly from the reward
signal.

Our work is most inspired by two consecutive works of Zoph & Le. Zoph & Le(2016)[1] used
reinforcement learning to train a recurrent network that generates descriptions of neural networks
to minimize validation error, and found convolutional and LTSM architectures that performed
competitively in CIFAR-10 and Penn Treebank datasets, respectively. Using this approach, Zoph
et al. (2017)[2] learn a convolutional cell on the CIFAR-10 dataset that can be transferred to the
ImageNet dataset. The architecture obtained by stacking these convolutional cells is called NasNet.
A key element of NasNet is to design the search space S to generalize across problems of varying
complexity and spatial scales. Applying NasNet directly on the ImageNet dataset would be very
expensive and require months to complete an experiment. However, if the search space is properly
constructed, architectural elements can transfer across datasets. By stacking together more of this cell,
they achieve better top-1 accuracy than the best human-invented architectures with less computation.

Q-Learning has also been used to automate the network design process. Baker et al.(2017)[3] train
a learning agent to sequentially choose CNN layers using Q-learning with ε-greedy exploration

2

strategy and experience replay. They beat existing networks designed with only standard convolution,
pooling and fully-connected layers. But reinforcement learning is more popular in comparison to
other approaches. Cai et al. (2017)[4] train a reinforcement learning agent to grow the depth or layer
width of a neural network, allowing previously learned weights to be reused. Li & Malik, 2016[5]
apply the idea of using reinforcement learning to find update policies for another network. Another
related work is the idea of learning to learn or meta-learning (Thrun & Pratt, 2012)[6], a general
framework of using information learned in one task to improve a future task.

In addition, there has been some related work in hyperparameter optimization (Bergstra et al., 2011;
Bergstra & Bengio, 2012; Snoek et al., 2012; 2015; Saxena & Verbeek, 2016). It is difficult to use
them generate variable-length outputs that specify the network configuration and have been observed
to work provided a good initial model (Bergstra & Bengio, 2012; Snoek et al., 2012; 2015). Then,
there are Bayesian optimization methods that allow to search non fixed length architectures (Bergstra
et al., 2013; Mendoza et al., 2016), but they are less general and less flexible.

3 Approach

Our work extends the Neural Architecture Search (NAS) framework put forward in [1]. In this
framework, a policy network πθ predicts a mini-batch of cell architectures Amini, which in turn
define a min-batch of child networks Cmini. The child networks are then trained until convergence
on the MNIST dataset and their validation accuracies are used as the reward to update πθ. Pseudo
code for this training loop is given below.

Pseudo Code: NAS Training Loop

for k = 0, 1, 2, . . . do

1. Sample a mini-batch of architectures Amini from πθ
2. Train child networks Cmini on MNIST and report reward Rmini
3. Form a training dataset D = (Amini, Rmini)

4. Compute policy update θk+1 = argmaxθL
CLIP
θk

(θ) by taking K steps of minibatch SGD
(with Adam) using proximal policy optimization (PPO)

3.1 Search Space

We experiment with two search spaces Asmall and Alarge. Asmall is a relatively small search space
where a convolutional cell is defined by two operations 〈op1, op2〉 applied consecutively, and the list
of operations is as follows:

• 1x3 then 3x1 conv
• 3x3 conv
• 3x3 depthwise-seperable conv
• 5x5 conv

• 7x7 conv
• 2x2 max pooling
• 2x2 average pooling
• identity

The advantage of using Asmall is that there are only 8× 8 = 64 possible child networks. As a result,
we can pre-compute the exact values of the reward function (child network validation accuracies)
prior to training πθ. Then during the training procedure, we can use these pre-computed rewards
to train πθ more quickly. As we show in the experiments section, even on this small search space,
NAS takes hundreds of samples to converge. With our limited compute (1 GPU), it was infeasible
for us to train hundreds of child network architectures. Pre-computing the reward function allows us
to both run experiments in a shorter amount of time and obtain accurate results. We provide more
information on the pre-computed reward function in the experiments section.

While Asmall is useful for analyzing the sample complexity and performance of NAS, it does not
demonstrate the ability NAS to generate complex architectures and learn without exploring the entire
search space. For this reason, we also experiment with a much larger search space Alarge, which is a
subset of the search spaced used in [2]. In Alarge, a convolutional cell is defined as B convolutional

3

blocks, where a block takes the form given in figure 1. Each convolutional block requires selecting
four parameters 〈ha, hb, op1, op2〉, where

• ha is the hidden layer input to op1
• hb is the hidden layer input to op2
• op1 is an operation from the list given above
• op2 is an operation from the list given above

As illustrated in figure 1, the representations produced by op1(ha) and op2(hb) in block Bi are
combined using filter-wise concatenation to form a new hidden layer hi. The hidden layer hi can be
selected as the value for the parameters ha, hb in the following blocks. This structure allows for cells
in this search space to form skip connections between layers within a cell.

Figure 1: Alarge cell-block structure

3.2 Controller Network

We use a LSTM with one hundred hidden units to approximate our policy πθ. The outputs of the
LSTM are softmax probability distributions over the operations, and or hidden states, that define the
convolutional cell in our search space. The softmax distribution produced at time-step t is fed as the
input to the LSTM at time-step t+ 1 to condition future parameters on the parameters selected so far.
To sample a child network, we sample the values of the parameters that define a cell according to
their respective softmax probabilities. The controller is trained to maximize the validation accuracy
of the sampled child networks using Proximal Policy Optimization (PPO). Becuase cells architectures
in Asmall and Alarge differ, our controller architectures for Asmall and Alarge differ as well. The
controllers for Asmall and Alarge are detailed below:

Figure 2: Controller architecture for Asmall Figure 3: Controller architecture for Alarge

3.3 Child Network

Given a cell architecture a, the corresponding child network C is defined by the sequence: a-maxpool-
a-maxpool-fc-softmax where maxpool is a 2x2 max pooling layer and fc is a 4096 hidden unit fully

4

connected layer with dropout. We follow the convention set by VGG and double the number of
filters used in the convolutional cell whenever the spatial dimension is reduced by a factor of two.
Specifically, we use 64 filters in the first convolutional cell and 128 filters in the second convolutional
cell. This child network structure is illustrated in figure 4 below. Child networks are trained on the
MNIST dataset and evaluated on a held out validation set. Although it is beyond the scope of this
work, it is likely that stacking a greater number of convolutional cells could increase performance
and allow the cell architecture to "scale" to larger datasets such as ImageNet.

Figure 4: Child network architecture

4 Experiments

In this section, we discuss the three NAS experiments we ran on the MNIST dataset. There are two
factors that differentiate these experiments. Namely, the search space used in the experiment (Asmall
or Alarge) and the reward function used in the experiment (rval or rparam). We explicitly define both
of these reward functions in the subsection below. Our experiments are as follows:

1. NAS applied to Asmall using the rval reward function
2. NAS applied to Asmall using the rparam reward function
3. NAS applied to Alarge using the rval reward function

To analyze the performance of NAS, we plot of the mean, min, max, and standard deviation of the
reward over training episodes. Here an episode corresponds to one iteration of the NAS training loop
wherein we sample a mini-batch of 20 child network architectures. For both of our experiments on
the Asmall search space, we pre-compute the values of our reward function prior to training the NAS
controller to dramatically speed up training time.

4.1 Reward functions

The validation accuracy reward function, rval, is defined as rval = V al(a), where a ∈ Asmall and
V al(a) denotes the validation accuracy of the child network with cell architecture a on the MNIST
validation set.

The maximum parameter reward function, rparam, is meant to constrain the search space such that
NAS finds the best architecture with fewer than n parameters. Let Pa be the total number of trainable
parameters in the child network with cell architecture a ∈ Asmall. Then rparam is defined as follows:

rparam =

{
−100.0 Pa ≥ n
rval Pa < n

4.2 Dataset

All of the child networks in our experiments are trained and evaluated on the MNIST dataset. We
choose the MNIST dataset because it is both a standard computer vision benchmark and a relatively
small dataset, which allows us to minimize training time. The MNIST dataset contains 70, 000 black
and white images of hand written digits. We use 54, 000 images for the training set, 6, 000 images
for the validation set, and 10, 000 images for the test set. We train each child network on the training
split for 10 epochs using a negative log likelihood loss and the ADAM optimizer with a learning rate

5

of 0.0001. We found empirically that after 10 epochs the validation accuracy of the child network
converged.

4.3 Results for Asmall using rval

The reward plot for Asmall using rval is given in the figure below. There are two takeaways from
this figure. Firstly, we see that NAS is successful in finding the best cell architecture in the search
space; this is illustrated in the graph by the min and mean validation accuracy (reward) converging
to the maximum validation accuracy. Secondly, the plot demonstrates that NAS has poor sample
complexity (requires many samples to converge). As shown in the graph, convergence occurs after
approximately 200 episodes, which would require training of 4, 000 child networks if the values of
the reward function were not pre-computed. The two cells with the highest validation accuracy found
by NAS on this search space are 〈5x5 conv, 1x3 then 3x1 conv〉 and 〈3x3 seperable conv, 7x7 conv〉.
We give the validation and test accuracies for the child networks corresponding to these cells in table
1.

Table 1: Performance of best cells for Asmall and rval

Validation Accuracy Test Accuracy
〈5x5 conv, 1x3 then 3x1 conv〉 98.85 98.88
〈3x3 seperable conv, 7x7 conv〉 98.85 98.2

Figure 5: Small search space validation reward plot

4.4 Results for Asmall using rparam

As discussed above, the maximum parameter reward function associates all architectures that have
more than n parameters with a negative reward. This negative reward discourages the controller from
selecting architectures with more than n parameters. We choose n = 150, 000 as our parameter limit
because it partitions the search space such that only cells with at most one convolutional operation
from the set {3x3 seperable conv, 3x3 conv} are associated with positive reward.

The reward plot for this experiment is given in figure 6. It is clear this graph that finding the
best architecture with fewer than 150, 000 parameters is more difficult than simply finding the best
architecture with no parameter limit. While the reward plot for rval converges after 200 episodes,
the reward plot for rparam does not fully converge within 1000 episodes. This is evidenced by
the fact that, even after 1000 episodes, the standard deviation of rparam is high and the minimum
reward appears to still be increasing. That said, the controller does quickly learn not to predict
architectures with negative reward as you can see by the rapid increase in reward from −25 to

6

50 within the first 100 episodes. In this experiment, NAS was unable to find the best architecture
with fewer than 150, 000 paramters, 〈3x3 conv, max〉. However, it was able to find the second best
architecture, 〈3x3 conv, avg〉. We give the parameter counts and validation accuracies for both of
these architectures in the following table.

Table 2: Performance of best and second best cells for Asmall and rparam

Parameter Count Validation Accuracy
〈3x3 conv, max〉 117, 972 98.61
〈3x3 conv, avg〉 117, 972 98.01

Figure 6: Small search space maximum parameter reward plot

4.5 Results for Alarge and rval

While the experiments on the search space Asmall allow us to analyze the performance of NAS in
detail, they do not illustrate how NAS can be used to generate novel and complex cell architectures.
For this reason, we also experiment with Alarge. Unfortunately, we did not have the compute
necessary to train NAS on enough samples for the reward plot to show any signs of improvement
on Alarge. For this reason we do not give a reward plot for this experiment. Instead, we report the
performance of the best cell NAS has found to-date and provide a digram of this cell architecture in
figure 7.

Table 3: Performance of best cell for Alarge and rval

Validation Accuracy Test Accuracy
Complex convolutional cell 41.41 42.97

7

Figure 7: Complex convolutional cell architecture

5 Conclusion

In this work, we demonstrate that it is possible to use NAS to find high performing convolutional
cells on the MNIST dataset. In addition, we show that it is relatively simple to modify the reward
function to account for computational requirements. Although, NAS succeeds at finding architectures
that perform well on MNIST, the number of samples necessary to find these architectures is very
large. We see the poor sample complexity of NAS as the main limitation associated with this method.
Even on the relatively small MNIST dataset, NAS required thousands of samples to converge, and we
believe that tens of thousands of samples would be required for convergence on larger dataset such as
CIFAR and ImageNet. Therefore, reducing the sample complexity of NAS by developing more data
efficient reinforcement learning algorithms is an important area for future work. In addition, we think
it would be interesting to apply the NAS framework to design other neural network components such
as attention or memory mechanisms.

8

References

[1] Zoph and Le. “Neural Network architecture search with reinforcement learning”. In: ICLR.
2016.

[2] Zoph et Al. “Learning Transferable Architectures for Scalable Image Recognition”. In:
arXiv:1707.07012. 2017.

[3] Baker et Al. “Designing neural network architectures using reinforcement learning”. In: ICLR.
2017.

[4] Cai et Al. “Efficient Architecture Search by Network Transformation”. In: arXiv:1707.04873.
2017.

[5] Li and Malik. “Learning to Optimize”. In: arXiv:1606.01885. 2016.
[6] Sebastian Thrun and Lorien Pratt. Learning to Learn. 1998.
[7] Liu Et Al. “Progressive Neural Architecture Search”. In: arXiv:1712.00559. 2017.

9

	Introduction
	Related Work
	Approach
	Search Space
	Controller Network
	Child Network

	Experiments
	Reward functions
	Dataset
	Results for Asmall using rval
	Results for Asmall using rparam
	Results for Alarge and rval

	Conclusion
	Contributions
	Code

